首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23662篇
  免费   1110篇
  国内免费   772篇
  2024年   7篇
  2023年   283篇
  2022年   319篇
  2021年   583篇
  2020年   559篇
  2019年   832篇
  2018年   859篇
  2017年   480篇
  2016年   574篇
  2015年   746篇
  2014年   1453篇
  2013年   1726篇
  2012年   943篇
  2011年   1439篇
  2010年   1016篇
  2009年   1104篇
  2008年   1278篇
  2007年   1307篇
  2006年   1199篇
  2005年   1069篇
  2004年   957篇
  2003年   801篇
  2002年   789篇
  2001年   489篇
  2000年   434篇
  1999年   431篇
  1998年   477篇
  1997年   398篇
  1996年   296篇
  1995年   354篇
  1994年   319篇
  1993年   248篇
  1992年   226篇
  1991年   187篇
  1990年   166篇
  1989年   135篇
  1988年   125篇
  1987年   126篇
  1986年   105篇
  1985年   109篇
  1984年   132篇
  1983年   109篇
  1982年   99篇
  1981年   79篇
  1980年   73篇
  1979年   45篇
  1978年   24篇
  1977年   16篇
  1976年   7篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
81.
cAMP binds to surface receptors of Dictyostelium discoideum cells, transducing the signal to adenylate cyclase, guanylate cyclase and to chemotaxis. The activation of adenylate cyclase is maximal after 1 min and then declines to basal levels due to desensitization, which is composed of two components: a rapidly reversible adaptation process, and a slowly reversible down-regulation of cAMP receptors. Adaptation is correlated with receptor phosphorylation.The chemotactic response and the cAMP-induced cGMP response were not significantly altered in D. discoideum cells pretreated with pertussis toxin. The initial increase of cAMP levels was identical in control and toxin treated cells, suggesting that activation of adenylate cyclase was also not affected. However, cAMP synthesis continued in toxin treated cells, due to a strongly diminished desensitization. Pertussis toxin inhibited the adaptation of adenylate cyclase stimulation, but not the down-regulation or phosphorylation of the cAMP receptors. Adenylate cyclase in D. discoideum membranes can be stimulated or inhibited by GTP, depending on the conditions used. Pertussis toxin did not affect the stimulation of adenylate cyclase but nullified the inhibition. In membranes from desensitized control cells, stimulation of adenylate cyclase by GTP was lost, whereas inhibition was retained. Stimulation of adenylate cyclase in membranes from desensitized pertussis toxin treated cells was diminished but not absent. These results indicate that receptor phosphorylation is not sufficient for adaptation of adenylate cyclase, and that a pertussis toxin substrate, possibly Gi, is also involved in this process.Abbreviations used ATPS Adenosine 5-0-(3-Thiotriphosphate) - GTPS Guanosine 5-0-(3-thiotri-phosphate) - (Sp)-cAMPS Adenosine 3,5-monophosphorothioate-Sp-isomer - dcAMP 2-deoxyadenosine 3,5-monophosphate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - DTT Dithiothreitol - buffer A 10 mM KH2PO4/Na2HPO4, pH 6.5 - buffer B 40 mM Hepes/NaOH, 0.5 mM EDTA, 250 mM sucrose, pH 7.7  相似文献   
82.
Summary Knowledge of the metabolic changes that occur in insulin-resistant type 2 diabetes is relatively lacking compared to insulin-deficient type 1 diabetes. This paper summarizes the importance of the C57BL/KsJ-db/db mouse as a model of type 2 diabetes, and illustrates the effects that insulin-deficient and insulin-resistant states have on hepatic glycogen metabolism. A longitudinal study of db/db mice of ages 2–15 weeks revealed that significant changes in certain parameters of hepatic glycogen metabolism occur during this period. The liver glycogen levels were similar between diabetic and control mice. However, glycogen particles from db/db mice were on average smaller in mass and had shorter exterior and interior chain lengths. Total phosphorylase and phosphorylase a activities were elevated in the genetically diabetic mice. This was primarily due to an increase in the amount of enzymic protein apparently the result of a decreased rate of degradation. It was not possible to find a consistent alteration in glycogen synthase activity in the db/db mice. Glycogen synthase and phosphorylase from diabetic liver revealed some changes in kinetic properties in the form of a decrease in Vmax, and altered sensitivity to inhibitors like ATP. The altered glycogen structure in db/db mice may have contributed to changes in the activities and properties of glycogen synthase and phosphorylase. The exact role played by hormones (insulin and glucagon) in these changes is not clear but further studies should reveal their contributions. The db/db mouse provides a good model for type 2 diabetes and for fluctuating insulin and glucagon ratios. Its use should clarify the regulation of hepatic glycogen metabolism and other metabolic processes known to be controlled by these hormones. The other animal models of type 2 diabetes, ob/ob mouse and fatty Zucker (fa/fa) rat, show similar impairment of hepatic glycogen metabolism. The concentrations of glycogen metabolizing enzymes are high and in vitro studies indicate enhanced rate of glycogen synthesis and breakdown. However, streptozotocin-induced diabetic animals and BB rats which resemble insulin-deficient type 1 diabetes are characterized by decreased glycogen turnover as a result of reduction in the levels of glycogen metabolizing enzymes.  相似文献   
83.
Summary A complementary DNA (cDNA) clone - cA2-47 - corresponding to a new 2-adrenergic receptor subtype has been isolated from a rat brain cDNA library and used as a hybridization probe to scrutinize the 2-receptor poly(A+) RNAs in rat brain, heart and adrenal gland. Hybridization of the 5 half of the coding region of this cDNA at 37°C to rat brain poly(A+) RNA revealed a single band at 5.8 kb as the size of its corresponding mRNA. Under identical hybridization conditions, a human platelet 2-receptor genomic probe failed to hybridize to any rat brain mRNAs.Under lower stringency conditions, hybridization of the full-length cDNA, cA2-47, to selected rat tissue poly(A+) RNA showed the presence of four different sized mRNAs in brain and three in both heart and adrenal gland. Messages of 1.3 kb and 2.1 kb were common in all three tissues (although the band at 2.1 kb was slightly higher in the heart and adrenal gland). A 5.8 kb mRNA was unique to the brain and a slightly higher band at 6.0 kb was consistently present in heart and adrenal gland but was absent in the brain. A fourth message at 3.4 kb was found predominantly in the brain and was either absent or present at very low levels in the other tissues examined. Under the same conditions, a human platelet 2-receptor probe hybridized to similar sized messages of 2.1 and 5.8 kb in rat brain and 2.2 and 6.0 kb in rat heart and adrenal gland. This probe, however, failed to detect the abundant 1.3 kb mRNA common to all tissues or the 3.4 kb message in rat brain. The extent of homology of these messages with cA2-47 is not confined to limited regions of the cDNA since similar hybridization patterns were observed using either 5-noncoding or 5-coding regions of the probe.These results provide the first direct evidence of a surprisingly large range of mRNA sizes for members of the 2-receptor family in brain, heart, and adrenal gland. The unique nature of certain members of the family in each of the tissues examined raises the curious possibility that these members might contribute to some of the individualized functions of the brain, cardiovasculature and adrenal gland.  相似文献   
84.
The main product of the reaction of fluorescein isothiocyanate (FITC) and bungarotoxin (Bgt) under near stoichiometric conditions is a monofluorescein derivative preferentially labeled at Lys 26, a highly conserved residue known to be involved in the binding (McDaniel, C. S., Manshouri, T., and Atassi, M. Z. (1987)J. Prot. Chem. 6, 455–461; Garcia-Borron, J. C., Bieber, A. L., and Martinez-Carrion, M. (1987)Biochemistry 26, 4295–4303) of postsynaptic neurotoxins specific for the nicotinic acetylcholine receptor (AcChR). The fluorescently labeled toxin retains a high affinity for the AcChR, and an unaltered specificity. Binding of FITC-Bgt to AcChR results in a significant decrease in the fluorescence intensity of the probe. This AcChR-mediated quenching of FITC-Bgt fluorescence allows for a continuous monitoring of the binding process. The quenching of free and bound FITC-Bgt by charged and neutral quenchers shows few fluorophore accessibility changes as induced by the toxin-bound state. The results are consistent with a model in which the positively charged concave surface of the toxin interacts with a negatively charged complementary surface in the receptor molecule.  相似文献   
85.
Summary We have used a cytochemical technique to investigate the distribution of acetylcholinesterase (AChE) activity in the antenna of the sphinx moth Manduca sexta. High levels of echothiophate-insensitive (presumably intracellular) AChE activity were found in six different types of antennal receptors localized in specific regions of the three antennal segments of the adult moth. Mechanosensory organs in the scape and pedicel, the Böhm bristles and Johnston's organ, are innervated by AChE-positive neurons. In each annulus of the antennal flagellum, AChE-positive neurons are associated with six sensilla chaetica and a peg organ, probably a sensillum styloconicum. At least 112 receptor neurons (8–10 per annulus) innervating the intersegmental membranes between the 14 distalmost annuli also exhibit high levels of echothiophate-resistant AChE. In addition, each annulus has more than 30 AChE-positive somata in the epidermis of the scale-covered (back) side of the flagellum, and 4 AChE-positive somata reside within the first annulus of the flagellum. Since none of the olfactory receptor neurons show a high level of echothiophateresistant AChE activity, and all known mechanoreceptors are AChE-positive, apparently intracellular AChE activity in the antenna correlates well with mechanosensory functions and is consistent with the idea that these cells employ acetylcholine as a neurotransmitter.  相似文献   
86.
Conclusions Current neurochemical studies of the NMDA receptor macromolecular complex are yielding new insights into the interactions of the subunits of this complex and the associated potential clinical benefits of selective modulation of these subnits. Such studies offer the great potential for a new generation of pharmacotherapies for a wide range of CNS disorders, including stroke, a condition for which there is currently no effective pharmacological treatment. However, it is essential to understand that the first generation products in this area may not be optimal pharmacotherapies, such that haracterization of possible receptor subtypes and understanding the molecular biology of the component proteins of the receptor complex will be crucial in the design of the optimal pharmacological modulators of the NMDA receptor complex.Special issue dedicated to Dr. Erminio Costa  相似文献   
87.
俞昌喜  王庆平 《生理学报》1990,42(4):331-339
本文应用受体阻断、高效液相,6-OHDA 化学损毁神经末梢和放射自显影等多学科技术方法,探讨脊髓苯环立啶受体的心血管效应与去甲肾上腺素能神经系统的关系。结果表明,哌唑嗪、育亨宾均可对抗 ith PCP 的降压和减慢心率作用,ith PCP 产生降压和减慢心率作用时,脊髓脑脊液内 MHPG 的含量升高;用6-OHDA 损毁脊髓 NA 能神经末梢后,ith PCP的降压和减慢心率作用大为减弱,脊髓 PCP 受体密度亦同时大为降低。可以认为,脊髓内有 PCP 受体分布于 NA 能神经末梢上,促进 NA 释放或抑制 NA 重摄取,可能是脊髓 PCP 受体产生心血管抑制效应的重要机理。  相似文献   
88.
89.
Insulin signal transmission through the plasma membrane was studied in terms of relationship between basal autophosphorylation of the β-subunit and the ability by bind insulin by the -subunit of the insulin receptor. In a cell free system, receptors phosphorylated on tyrosine residues in the absence of insulin were separated from non-phosphorylated receptors using antiphosphotyrosine antibodies. Insulin binding assays were then performed on basally autophosphorylated and on non-phosphorylated receptors. We found that the tyrosine phosphorylated receptors, which corresponded to 25% of the total number of receptors, were accountable for 60–80% of insulin binding. Scatchard representation of binding data has shown that the plot corresponding to tyrosine phosphorylated receptors was localized above, and was steeper than the plot corresponding to non-phosphorylated receptors. These data make it likely that the conformation of -subunit which favours ligand binding is connected to the conformation of β-subunit which favours phosphate reception on tyrosine residues. Reciprocally, the high-affinity conformation of insulin receptor seems to become stabilized by basal autophosphorylation.  相似文献   
90.
A set of 18 synthetic uniform overlapping peptides spanning the entire extracellular part (residues 1–210) of the -subunit of human acetylcholine receptor were studied for their binding activity of125I-labeled -bungarotoxin and cobratoxin. A major toxin-binding region was found to reside within peptide 122–138. In addition, low-binding activities were obtained with peptides 34–49 and 194–210. It is concluded that the region within residues 122–138 constitutes a universal major toxin-binding region for acetylcholine receptor of various species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号